Dann wird eine Semantik für das deutsche Fragment spezifiziert. Eine entsprechenae Regelung für die Subkonstituenten in der logischen Form wird mit jeder kontextfreien Regelung verbunden.
(9) S → NP VP
(10) Semantische Regelung 1
Wenn die logische Form für NP NP’ ist und die logische Form für VP VP’ ist, dann ist die logische Form für S VP’ (NP’).
(11) VP → TV NP
(12) Semantische Regelung 2
Wenn die logische Form für TV TV’ ist und die logische Form für NP NP’ ist, dann ist die logische Form für VP TV’ (NP’).
Als ein Beispiel wollen wir “Hans Castorp sieht Clawdia Chauchat” betrachten. Jede logischen Formen für “Hans Castorp” und “Clawdia Chauchat”, sind Hans Castorp’ und Clawdia Chauchat’. Die logische Form für das transitive Verb “sieht” ist der Lambdaausdruck λx.λy.sieht’ (y, x). Durch die Regelung in (12) wird die VP “sieht Clawdia Chauchat” mit dem Ausdruck (λx.λy.sieht’ (y, x)) (Clawdia Chauchat’) verbunden, die durch ß-Reduktion gleichbedeutend mit λy. sieht’ (y, Clawdia Chauchat’) ist. Durch die Regelung in (11) wird der Satz “Hans Castorp sieht Clawdia Chauchat” mit der logischen Form (λy.sieht”(y, Clawdia Chauchat’)) (Hans Castorp’) verbunden, die durch ß-Reduktion gleichbedeutend mit sieht’ (Hans Castorp’, Clawdia Chauchat’) ist. Die Ableitung kann im folgenden Baum für “Parsing” zusammengefaßt werden.
花村嘉英(2005)「計算文学入門-Thomas Mannのイロニーはファジィ推論といえるのか?」より