モンタギュー文法のシュガーリングーフォーマットのシフトを中心に14


 Mit anderen Worten erscheinen die Bedingungen als die Subausdrücke von DRS.

(18) Definition der DPL Syntax

1. Wenn t,…,tn individuelle Konstanten oder Variablen sind und R ein n- stelliges Prädikat ist, dann ist Rt,..,tn eine Formel.
2. Wenn tj und t2 individuelle Konstanten oder Variablen sind, dann ist t1= t2 eine Formel.
3. Wenn Φ eine Formel ist, dann ist -Φ eine Formel.
4. Wenn Φ und Ψ Formeln sind, dann ist [Φ⋀Ψ] eine Formel.
5. Wenn Φ und Ψ Formeln sind, dann ist [Φ∨Ψ] eine Formel.
6. Wenn Φ und Ψ Formeln sind, dann ist [Φ→Ψ] eine Formel.
7. Werm Φ eine Formel ist und x eine Variable ist, dann ist ヨxΦ eine Formel.
8. Wenn Φ eine Formel ist und x eine Variable ist, dann ist ∀xΦ eine Formel.
9. Eine Formel ist nichts als der Grund 1-8.

 Das keine logische Vokabular von DPL besteht aus n-stelligen Prädikaten, individuellen Konstanten und Variablen. Die logischen Konstanten sind Negation -,Konjunktion ⋀ ,Disjunktion ∨,Folgerung →,Existenzquantor ヨ,Allquantor ∀ und. Identität =. Somit ist die Syntax von DPL die Syntax der normalen Prädikatenlogik.

(19) Definition der DRT Syntax

1. Wenn t1,…,tn individuelle Konstanten oder Variablen sind und R ein n-stelliges Prädilcat ist, dann ist Rt,…,tn eine Bedingung.
2. Wenn t1 und tn individuelle Konstanten oder Variablen sind, dann ist t1= t2 eine Bedingung.
3. Wenn Φ eine DRS ist, dann ist -Φ eine Bedingung.
4. Wenn Φ und Ψ DRSn sind, dann ist [Φ ∨ Ψ] eine Bedingung.
5. Wenn Φ und Ψ DRSn sind, dann ist [Φ→Ψ] eine Bedingung.
6. Wenn Φ1,…,Φn (n = 0) Bedingungen sind und x1,…,xk Variablen (k = 0) sind, dann ist [x1,…,xk] [x1,…,xn] eine DRS.
7. Eine Bedingung oder eine DRS ist nichts als der Grund 1-6.

 Das keine logische Vokabular besteht aus n-stelligen Prädikaten, individuellen Konstanten und Variablen. Die logischen Konstanten sind Negation -, Folgerung → und Identität =.

花村嘉英(2005)「計算文学入門-Thomas Mannのイロニーはファジィ推論といえるのか?」より

シナジーのメタファー1


コメントを残す

メールアドレスが公開されることはありません。 が付いている欄は必須項目です