Wollen wir zum Beispiel betrachten, daß ein Fieberthermometer eine Körperwärme von 36 °C anzeigt. Seine Toleranz betragt ungefähr ±1%. In der Technik hat sich ein dreieckiger Verlauf der Zugehörigkeitsfunktion als besonders praktisch erwiesen.
Man erkennt den gemessenen Wert (36°C) und die Intervallgrenzen,die durch die Toleranzangaben entstehen. Ein schlechtes Meßgerät mit größeren Toleranzen führt zu einem größeren Intervall, ein unendlich gutes Meßgerät ohne jegliche Toleranz zu einem einzigen, diskreten Wert. Der senkrechte Strich über dem Meßwer deutet an, daß es sich um einen Wert mit Toleranzen handelt (Hanamura (2005: 142)).
Wie ermittelt man nun den Zugehörigkeitsgrad einer Fuzzy-Zahl zu einer Fuzzy-Menge? Die plausibelste Weise ist die, den maximalen Wert der Zugehörigkeitsfunktion am Schnittpunkt der beiden Zugehörigkeitsfunktionen zu wählen. Zum Beispiel werden die Körperwärme von 36.0°C ±0.4°C und der folgende Kurvenverlauf für die Gesundheit gegeben.
Der Zugehörigkeitsgrad von 36.0oC ±0.4°Czur Fuzzy-Menge “krank” liegt im Bereich von 0.3 bis 0.6. Es hat sich als praktisch erwiesen, den Maximalwert zu verwenden.
(30) μkranke (36.0°C±0.4°C) = 0.6
Sollte eine andere Vorgehensweise doch ein gegebenes Problem besser lösen und sich in das bestehende Gebäude der Fuzzy-Mathematik einfügen lassen, so ist nichts gegen diese andere Vorgehensweise einzuwenden.
(31) μniedrig (36.0°C±0.4°C) = 0.1
μmittel (36.0°C ±0.4°C) = max {0.5; 0.8} = 0.8
μhoch (36°.0°C ±0.4°C) = 0.5
花村嘉英(2005)「計算文学入門-Thomas Mannのイロニーはファジィ推論といえるのか?」より translated by Yoshihisa Hanamura
コメントを残す