Die Negation erfolgt sehr einfach. Die Voraussetzung hierfür ist allerdings die normalisierte Darstellung.
(28) Negation
μ/A(x)=1 – μA(x)
Die Modifizierer (z.B. sehr, mehr oder weniger) werden als Operatoren betrachtet, die einen Wahrheitswert zwar beeinflussen aber nicht grunasätzlich ändern. Sie verstärken die Eigenschaften der betrachteten Elemente oder schwächen sie ab. Das sprachliche “sehr” kann mathematisch recht gut durch Quadrieren der Zugehörigkeitsfunktion erreicht werden. “Mehr oder weniger” kann mathematisch durch die Quadratwurzel der Zugehörigkeitsfunktion dargestellt werden.
(29) Modifizieren
hitzig
nicht hitzig = 1 – hitzig
duldsam
mehr oder weniger duldsam = √duldsam
sehr duldsam = duldsam2
nicht sehr duldsam = 1 – sehr duldsam
= 1 – duldsam2
Statt der Kombination einer Fuzzy-Menge mit einem Modifizierer können auch eigenständige Fuzzy-Mengen definiert werden. Das hat zudem den Vorteil, daß die Grenze der einzelnen Mengen individuell festgelegt werden können. Hier handelt es sich um völlig eigenständige Mengen.
Hanamura (2005) beschreibt, was das ist, wenn die Elemente selbst unscharf sind. Das heißt, ein Element mae: also nicht 10 sondern “so ungeranr 10” oder “10 士 10%” sein. Diese Problematik trifft wesentlich häufiger auf, als es auf den ersten Blick vielleicht scheint. Alle Meßwerte sind keine absoluten Größen, sondern sie sind mit Toleranzen behaftet. Streng genommen darf der Wert, den ein Meßgerät anzeigt, nicht vorbehaltlos übernommen werden, sondern muß stets mit den Meßgerätetoleranzen versehen werden. Diese Vorgehensweise ist in der Meßtechnik selbstverständlich. Anschaulich kann eine unscharfe Zahl als Heine unscharfe Menge betrachtet werden, als Intervall, in dessen Mitte die Zahl selbst liegt und dessen Breite durch die Toleranzen bestimmt wird.
花村嘉英(2005)「計算文学入門-Thomas Mannのイロニーはファジィ推論といえるのか?」より translated by Yoshihisa Hanamura
コメントを残す